NVIDIA H200 VS NVIDIA H100 SXM

H200 и H100 SXM построены на архитектуре Hopper от NVIDIA. Это сравнение поможет выбрать между разными конфигурациями одного семейства GPU.

NVIDIA

H200

VRAM 141GB
FP32 67 TFLOPS
TDP 700W
От $1.49/h 4 провайдеров
NVIDIA

H100 SXM

VRAM 80GB
FP32 67 TFLOPS
TDP 700W
От $0.73/h 40 провайдеров

📊 Детальное сравнение характеристик

Характеристика H200 H100 SXM Разница
Архитектура и дизайн
Архитектура Hopper Hopper -
Техпроцесс 4nm 4nm -
Целевой рынок datacenter datacenter -
Форм-фактор SXM5 SXM5 -
Память
Объём VRAM 141GB 80GB +76%
Тип памяти HBM3e HBM3 -
Пропускная способность 4.8 TB/s 3.35 TB/s +43%
Шина памяти 6144-bit 5120-bit -
Вычислительные блоки
Ядра CUDA 16,896 16,896
Тензорные ядра 528 528
Производительность (TFLOPS)
FP32 (одинарная точность) 67 TFLOPS 67 TFLOPS
FP16 (половинная точность) 1979 TFLOPS 1979 TFLOPS
TF32 (тензорная) 989 TFLOPS 989 TFLOPS
FP64 (двойная точность) 34 TFLOPS 34 TFLOPS
Питание и подключение
TDP (мощность) 700W 700W
PCIe PCIe 5.0 x16 PCIe 5.0 x16 -
NVLink NVLink 4.0 (900 GB/s) NVLink 4.0 (900 GB/s) -

🎯 Рекомендации по применению

🧠

Обучение LLM и больших моделей

NVIDIA H200

Больший объём VRAM и пропускная способность памяти критически важны для обучения больших языковых моделей. H200 предлагает 141GB по сравнению с 80GB.

AI-инференс

NVIDIA H100 SXM

Для инференса важнее всего производительность на ватт. Учитывайте баланс между пропускной способностью FP16/INT8 и энергопотреблением.

💰

Бюджетный выбор

NVIDIA H100 SXM

По текущим облачным ценам H100 SXM имеет более низкую почасовую ставку.

NVIDIA H200 лучше всего подходит для:

  • Масштабный LLM-инференс
  • Модели с большим окном контекста
  • Бюджетное развертывание

NVIDIA H100 SXM лучше всего подходит для:

  • Обучение LLM
  • Пре-тренировка базовых моделей
  • Маломасштабный инференс

Часто задаваемые вопросы

Какой GPU лучше для AI-обучения: H200 или H100 SXM?

Для AI-обучения ключевыми факторами являются объём VRAM, пропускная способность памяти и производительность тензорных ядер. H200 предлагает 141GB памяти HBM3e с пропускной способностью 4.8 TB/s, тогда как H100 SXM — 80GB памяти HBM3 с 3.35 TB/s. Для более крупных моделей больший объём VRAM H200 даёт преимущество.

Какова разница в цене между H200 и H100 SXM в облаке?

По нашим данным, H200 стоит от $1.49/час, а H100 SXM — от $0.73/час. Разница составляет около 104%.

Могу ли я использовать H100 SXM вместо H200?

Это зависит от ваших требований. Если ваша модель помещается в 80GB VRAM и вам не нужна дополнительная производительность H200, H100 SXM может быть экономичной альтернативой. Однако для задач, требующих максимального объёма памяти или масштабирования на несколько GPU, H200 с поддержкой NVLink (NVLink 4.0 (900 GB/s)) может быть незаменим.

Готовы арендовать GPU?

Сравните цены у 50+ облачных провайдеров и найдите лучшее предложение.